
day29_cyclops 11/5/19

Today's task is to write a program that creates a list of cyclops numbers. A "cyclops number" is defined as

a number with an odd number of digits, with one zero, whose center digit is zero. Here are the first 32:

0, 101, 102, 103, 104, 105, 106, 107, 108, 109, 201, 202, 203, 204, 205, 206, 207, 208,

209, 301, 302, 303, 304, 305, 306, 307, 308, 309, 401, 402, 403, 404...

See how all of these numbers have a zero as the center digit? Cyclops numbers are listed on the Online

Encyclopedia of Integer Sequences (http://oeis.org/A134808).

Write a program that asks the user for a starting value and an ending value and then outputs all the cyclops

numbers that occur from the start up to and including the end value. Please make sure to do the following

by the time you are done:

 Save your program as day29_cyclops on the Z: drive in your Python folder.

 Use a try/except structure to make sure the user enters integers.

 Make sure the second integer is larger than the first and that both integers are positive. You do this

part with an if statement inside the try/except section, not with its own try/except block.

 Find and print all the cyclops numbers from the lower bound to the upper bound. Don't forget to

check the upper bound, that's one of the requirements.

 Spell your prompts properly. Use variable names that make the code easy to read and understand.

 Print the numbers in 5 columns, spaced nicely using the .rjust string method.

 Make the columns work for any length numbers in the range the user enters (for example, see how

11011 is lined up with the 804 column in the sample output below.) You know the longest number

won't be longer than the second integer the user enters, which helps with this.

 How can you tell a number is a cyclops number? First, turn it into a string: number = str(n). Then

count how many zeros are in there using the count("0") method: number.count("0"). If there is a

single zero it might be a cyclops number.

 Next check if the zero is the center character. Hmm... there can only be a center character if there

are an odd number of digits, so you should check if there are an odd number of digits using the %

operator and the len() command.

 If there are an odd number of digits you can access the center character in a string by slicing using

square brackets like this (this code has the number we are testing named number, already turned

into a string):

 if number[int(len(number)/2)]=="0":

 For full credit you need to make your program handle any length of number.

 At the end print a count of the cyclops numbers found that also reports the starting and ending

numbers checked. Something like "n cyclops numbers found from x to y"

See next page for sample output.

http://oeis.org/A134808

Sample output:

Please enter the starting value (a positive integer): 800

Please enter the ending value (a larger positive integer): 11012

 801 802 803 804 805

 806 807 808 809 901

 902 903 904 905 906

 907 908 909 11011 11012

20 cyclops numbers found from 800 to 11012

If you'd like extra credit, after you satisfy all of the above requirements print out the subset of cyclops

numbers that you found that are palindromic cyclops numbers (http://oeis.org/A138131), that is, cyclops

numbers which are palindromes (the same number forwards and backwards). For the above run, the extra

note would be:

3 were palindromic cyclops numbers:

 808 909 11011

For more extra credit, also print out which ones are prime palindromic cyclops numbers.

http://oeis.org/A138131

